Stress causes strain. If you are human, the ability to cope with stress without undue strain
is called resilience. If you are a material, it is called elastic modulus.

Stress is something that is applied to a material by loading it. Strain € a change of
shape e is its response. The strain depends on the material, on the magnitude of the stress
and the way it is applied e the mode of loading. The cover picture illustrates the common
modes of loading. Ties carry tension € often, they are cables. Columns carry compression €
often they are hollow tubes. Beams carry bending moments, like the wing spar of the plane
or the horizontal roof beams of the airport. Shafts carry torsion, as in the drive shaft of cars
or the propeller shaft of the plane. Pressure vessels contain a pressure, as in the tires of the
plane.

Stiffness is the resistance to elastic shape change, ‘elastic’ meaning that the material
returns to its original shape when the stress is removed. Strength (Chapter 6) is its resis-
tance to permanent distortion or total failure. Stress and strain are not material properties;
they describe a stimulus and a response. Stiffness (measured by the elastic modulus E,
defined in a moment) and strength (measured by the elastic limit Sy or tensile strength Si)
are material properties. Stiffness and strength are central to mechanical design, often
in combination with the density, r. This chapter introduces stress and strain and the
elastic moduli that relate them. These properties are neatly summarised in a material
property chart € the modulusedensity chart € the first of many that we shall explore in
this book.

Density and modulus are microstructure-insensitive properties. They derive directly from
the atomic weight and packing, and from the nature of the bonds that bind the atoms of the
material together. This distinguishes them (and a number of other such properties) from
microstructure-sensitive properties like strength and toughness that depend strongly on the
way that the material has been processed. In this chapter, we explore atomic bonding and
packing, giving insight into the way modulus and density vary across the rows of the
periodic table of the elements and the way they change when elements are combined to
form ceramics, glasses, polymers and elastomers. There is not much you can do to change
the weight, packing and bonding of atoms, but there are two ways in which modulus and
density can be manipulated: by combining two materials together to make a composite, or
by dispersing space within them, making foams. Property charts are a good way to show
how this works.

Density Many applications (e.g. aerospace components, automotive bodies, sports
equipment) require stiffness and strength at low weight, and this depends in part on the
density of the materials of which they are made. Density is mass per unit volume, measured
in kg/m3.

The density of samples with regular shapes can be determined using a precision mass bal- ance
and accurate measurements of the dimensions (to give the volume), but this is not the best way.
Better is the ‘double weighing’ method: the sample is first weighed in air and then, when fully
immersed, in a liquid of known density. When immersed, the sample feels an upward force equal
to the weight of liquid it displaces (Archimedes’ principle!). The density is then calculated, as
shown in Figure 4.1.
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Modes of loading Most engineering components carry loads. Their elastic response depends on the
way the loads are applied. As explained earlier, the components in both structures shown on the
front page of this chapter are designed to withstand different modes of loading: tension,
compression, bending, torsion and internal pressure. Usually one mode dominates, and the
component can be idealised as one of the simply loaded cases in Figure 4.2 € tie, column, beam,
shaft or shell. Ties carry simple axial tension, shown in (a); columns do the same in simple
compression, as in (b). Bending of a beam (c) creates simple axial tension in elements on one side
of the neutral axis (the centre-line, for a beam with a symmetric cross- section) and simple
compression in those on the other. Shafts carry twisting or torsion (d), which generates shear
rather than axial load. Pressure difference applied to a shell, like the cylindrical tube shown in (e),
generates bi-axial tension or compression.

Stress Consider a force F applied normal to the face of an element of material, as in Figure
4.3 on the left of row (a). The force is transmitted through the element and balanced by an equal but
opposite force on the other side, so that it is in equilibrium (it does not move). Every plane normal
to F carries the force. If the area of such a plane is 4, the tensile stress S in the element (neglecting
its own weight) is
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Archimedes (287e212 BC), Greek mathematician, engineer, astronomer and philosopher, designer of war
machines, the Archimedean screw for lifting water, evaluator of p (as 3  1/7) and conceiver, while taking a bath,
of the principle that bears his name.
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Figure 4.2 Modes of loading and states of stress.

Stress Strain

N -

L& v d N

Tensile stress ¢ = F/A

usual units MPa Tensile strain ¢ = (L - Lp)/Lg

Shear stress © = Fg/A

Shear strain v = wiL,
usual units MPa ! °

Volume V,  Volume V

p
4
Vi
o’
C) =
© P > /F P
" A 7,
Ip
Pressure p Volume strain (dilatation)
usual units MPa A= (V- Vg)Vg

Elastic deformation

= A Slope E

o
c=Ee
E = Young's modulus

— F |
Fs
(b) J Area A r L T A Slope G
F_
. y

G = Shear modulus

P A Slope K

p=KA

K = Bulk modulus

Figure 4.3 The definitions of stress, strain and elastic moduli.



If the sign of F is reversed, the stress is compressive and given a negative sign. Forces? are
measured in newtons (N), so stress has the dimensions of N/m2. But a stress of 1 N/m? is tiny e
atmospheric pressure is 105 N/m?2 € so the usual unit is MN/m? (10¢ N/m?), called mega- pascals,
symbol? MPa.

If, instead, the force lies parallel to the face of the element, three other forces are needed to
maintain equilibrium: an equal and opposite force on the opposing face, for force equilibrium, and
a complementary pair of forces on the other two faces, for moment equilibrium (Figure 4.3,
row (b)). This creates a state of pure shear in the element. The shaded plane, for instance, carries
the shear stress t of

The units, as before, are MPa.
One further state of multi-axial stress is useful in defining the elastic response of materials: that
produced by applying equal tensile or compressive forces to all six faces of a cubic element, asin
Figure 4.3, row (c). Any plane in the cube now carries the same state of stress € it is equal to the force
on a cube face divided by its area. The state of stress is one of hydrostatic pressure, symbol p, again
with the units of MPa. There is an unfortunate convention here. Pressures are positive when they
push e the reverse of the convention for simple tension and compression.

2 |saac Newton (1642e1727), scientific genius and alchemist, formulator of the laws of motion, the inverse-
square law of gravity (though there is some controversy about this), laws of optics, the differential calculus and
much more.

3 Blaise Pascal (1623e1662), philosopher, mathematician and scientist, who took a certain pleasure in
publishing his results without explaining how he reached them. Almost all, however, proved to be correct.



Engineering components can have complex shapes and can be loaded in different ways,
creating complex distributions of stress. But no matter how complex, the stresses in any small
element within the component can always be described by a combination of tension,
compression and shear. Commonly, the simple cases of Figure 4.3 suffice, using superposition
of two cases to capture, for example, bending plus compression.

Strain  Strain is the response of materials to stress (second column of Figure 4.3). A tensile
stress o applied to an element causes the element to stretch. If the element in Figure 4.3(a),
originally of side length L,, stretches by 61 = L — L, the nominal tensile strain is

£= (4.3)

A compressive stress shortens the element; the nominal compressive strain (negative) is
defined in the same way. Since strain is the ratio of two lengths, it is dimensionless.

A shear stress causes a shear strain v (Figure 4.3(b)). If the element shears by a distance o,
the shear strain is

w
tan(y) = — = (4.4)
Lo

In practice, tan v = 7y because elastic strains are almost always small. Finally, a hydrostatic
pressure p causes an element of volume V to change in volume by V. The volumetric strain, or
dilatation (Figure 4.3(c)), is

A=2" (4.5)

Stress—strain curves and moduli  Figure 4.4 shows typical tensile stress—strain curves for a
ceramic, a metal and a polymer, each taken all the way to failure. The initial part, up to the
elastic limit a,, is approximately linear (Hooke’s* law), and it is elastic, meaning that the
strain is recoverable — the material returns to its original shape when the stress is removed.
Stresses above the elastic limit cause permanent deformation (ductile behaviour) or brittle
fracture.

Within the linear elastic regime, strain is proportional to stress (Figure 4.3, third column).
The tensile strain is proportional to the tensile stress:

o = Ee (4.6)

and the same is true in compression. The constant of proportionality, E, is Young’s® modulus.
Similarly, the shear strain v is proportional to the shear stress

1= Gy (4.7)

# Robert Hooke (1635—1703), able but miserable man, inventor of the microscope, and perhaps, too, of the
idea of the inverse-square law of gravity. He didn't get along with Newton.

®* Thomas Young (1773—1829), English scientist, expert on optics and deciphering ancient Egyptian hiero-
glyphs (among them, the Rosetta stone). It seems a little unfair that the modulus carries his name, not that
of Hooke.
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Figure 4.4 Tensile stress—strain curves for ceramics, metals and polymers.



and the dilatation A is proportional to the pressure p:
p=KA (4.8)

where G is the shear modulus and K the bulk modulus, as illustrated in the third column of
Figure 4.3. All three of these moduli have the same dimensions as stress, that of force per unit
area (N/m? or Pa). As with stress, it is convenient to use a larger unit, this time an even bigger
one, that of 10’ N/m?, gigapascals, or GPa.

Young’s modulus, the shear modulus and the bulk modulus are related, but to relate them
we need one more quantity, Poisson’s® ratio. When stretched in one direction, the element of
Figure 4.3(a) generally contracts in the other two directions, as it is shown doing here. Pois-
son’s ratio, v, 1s the negative of the ratio of the lateral or transverse strain, &, to the axial strain,
&, in tensile loading:

£t

y—— (4.9)

£

Since the transverse strain itself is negative, v is positive — it is typically about 1/3.

In an isotropic material (one for which the moduli do not depend on the direction in which
the load is applied), the moduli are related in the following ways:
E E

“=3nry KT3mo

(4.10)
Commonly, » = 1/3 so that

G—%E and K=E (4.11a)

® Siméon Denis Poisson (1781—1840), French mathematician, known both for his constant and his distri-
bution. He was famously uncoordinated, failed geometry at university because he could not draw, and had
to abandon experimentation because of the disasters resulting from his clumsiness.



Elastomers are exceptional. For these, v = 1/2 when

C—%E and K=>E (4.11b)

This means that rubber (an elastomer) is easy to stretch in tension (low E), but if constrained
from changing shape, or loaded hydrostatically, it is very stiff (large K) — a feature for which
designers of shoes must allow.

Hooke’s law in three dimensions The simple loading states in Figure 4.2 lead to stresses in
one or two perpendicular directions. But, as we have now seen, even under uniaxial load, the
strain is inherently three-dimensional, thanks to Poisson’s ratio. So it is helpful to relate stress
and strain in a more general way that allows for loading acting in all three perpendicular
directions at once.

Figure 4.5 shows the cubic element of material, now subjected to three unequal stresses a1,
7> and a3, resulting in strains 1, £ and £3. To relate stress to strain, we use the principle of
superposition — applying each stress in turn, finding the strains and then summing these to find
the overall strain when all three stresses act together. First applying a stress a1, the resulting
strains (from equations (4.6) and (4.9)) are
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Figure 4.5 Multi-axial states of stress and strain.

Repeating for stresses o3 and a3, and summing the strains gives us Hooke’s law in three
dimensions:

1( )

&1 = —=\oy —Vvay, —Va

1=g(o1 2 — 103
1

E‘z—E(— Vo1 + 03 —v3) (4.13)
1

£y = E(— voy — vy +03)

These results are particularly helpful in design problems in which strain is constrained.
Figure 4.6 shows a cube of material located in a rigid slot of the same width as the cube. A
vertical downwards stress o1 = —o is applied to the top face of the cube. At first sight, this



looks like conventional uniaxial compression. But the cube wishes to expand laterally due to
Poisson’s ratio. In the 2-direction it can do so, but perpendicular to the slot it is constrained;
the strain in the 3-direction is zero. What does Hooke’s law tell us about the stresses and
strains?

Figure 4.6 Constrained compression.
For the 3-direction, we can write (noting that a2 = 0).

1
3 =0 =F(+10+3), 50 73 = w0

The effect of constraint is therefore to induce a compressive stress vo in the constrained
direction, perpendicular to the applied stress. But this stress will itself contribute a Poisson
strain 1n the 1-direction, so the strain vertically 1s

1 —ad 2
&1 =—=(oy —vo3) =— (1 —v
Lo v - 220
Now look at the ratio of stress to strain in the 1-direction:
a1 E
— = (4.14)
e1 (1 —02)

The constrained cube behaves like a material with an ‘effective modulus® which is greater
than E (since the factor (1 — %) is less than unity).



The effect is even more marked when there is constraint in both 2- and 3-directions (see
Exercises at the end of the chapter), and the effect is most significant for values of Poisson’s
ratio near 0.5. As noted earlier, the solid material with the lowest modulus — rubber — displays
the most significant stiffening effect when it is loaded in a geometry that imposes constraint.

Elastic energy If you stretch an elastic band, energy is stored in it. The energy can be
considerable: catapults can be lethal; the elastic deflection of truck springs can cushion the
truck and its contents. The super-weapon of the Roman arsenal at one time was a wind-up
mechanism that stored enough elastic energy to hurl a 10-kg stone projectile 100 m.

How do you calculate this energy? A force F acting through a displacement dL does work
FdL. A stress o = F/A acting through a strain increment de = dL/L does work per unit volume

FdL
dW = —— = ade (4.15)
AL
with units of J/m?. If the stress is acting on an elastic material, this work is stored as elastic
energy. The elastic part of all three stress—strain curves of Figure 4.4 — the part of the curve
before the elastic limit — is linear; in it, ¢ = Ee. The work done per unit volume as the stress is
raised from zero to a final value o* is the area under the stress—strain curve:
a*/E
- 2
1 (c* :
W= [oade=— (") (4.16)
) 2 E
0

This is the energy that is stored, per unit volume, in an elastically strained material. The
energy is released when the stress is relaxed.



Measurement of Young’s modulus You might think that the way to measure the elastic
modulus of a material would be to apply a small stress (to be sure to remain in the linear elastic
region of the stress—strain curve), measure the strain and divide one by the other. In reality,
moduli measured as slopes of stress—strain curves are inaccurate, often by a factor of two or
more, because of contributions to the strain from material creep or deflection of the test
machine. Accurate moduli are measured dynamically: by measuring the frequency of natural
vibrations of a beam or wire, or by measuring the velocity of sound waves in the material. Both
depend on /E/p, so if you know the density p, you can calculate E.

Stress-free strain  Stress is not the only stimulus that causes strain. Some materials respond to
a magnetic field by shrinking — an effect known as magnetostriction. Others respond to an
electrostatic field in the same way — they are known as piezo-electric materials. In each case, a
material property relates the magnitude of the strain to the intensity of the stimulus
(Figure 4.7). The strains are small, but the stimulus can be controlled with great accuracy, and
the material response is extremely fast. Magnetostrictive and piezo-electric strain can be driven
at high frequency. This is exploited in precision positioning devices, acoustic generators and
sensors — applications we return to in Chapters 15 and 16.
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Figure 4.7 Stimuli, material properties and response.

A more familiar effect is that of thermal expansion: strain caused by change of temperature.
The thermal strain e is linearly related to the temperature change AT by the expansion
coefficient, «:

e = aAT (4.17)

where the subscript T is a reminder that the strain is caused by temperature change, not by
stress.

The term ‘stress-free strain’ is a little misleading. It correctly conveys the idea that the strain
is not caused by stress but by something else. But these strains can nonetheless give rise to
stresses if the body suffering the strain is constrained. Thermal stress, arising from constrained
thermal expansion, can be a particular problem, causing mechanisms to jam and railway
tracks to buckle. We analyse it in Chapter 12.



4.3 The big picture: material property charts

If we want materials that are stiff and light, we need an overview of what’s available. That is
the role of material property charts (introduced in Chapter 2).

The modulus—density chart The moduli and densities of common engineering materials are
plotted in Figure 4.8; material families are enclosed in coloured envelopes. The modulus E
spans seven decades’, from 0.0001 to nearly 1000 GPa; the density p spans a factor of 2000,
from less than 10 to 20,000 kg/m?®. Ceramics (yellow envelope) and metals (red envelope)
have high moduli and densities; none has a modulus less than 10 GPa or a density less than
1700 kg/m>. Polymers, by contrast, all have moduli below 10 GPa and densities that are lower
than those of any metal or ceramic — most are close to 1000 kg/m® (the density of water).
Elastomers have roughly the same density as other polymers, but their moduli are lower by a
further factor of 100 or more. Materials with even lower densities are porous: synthetic foams
and natural cellular structures like wood and cork.
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Figure 4.8 The Young's modulus—density chart.

7 Very-low density foams and gels (which can be thought of as molecular-scale, fluid-filled foams) can have
lower moduli than this. As an example, gelatine (as in Jell-O) has a modulus of about 107° GPa.



This property chart gives an overview, showing where families and their members lie in E—p
space. We will use it in Chapter 5 to select materials for stiffness-limited applications in which
weight must be minimised.

Anisotropy Glasses have disordered structures with properties that are isotropic, meaning
they are the same no matter in which direction they are measured. Crystals, by contrast, are
ordered, and because of this, their properties depend on the direction in which they are
measured — they are anisotropic. Most real metals and ceramics are polycrystalline, made up
of many tiny, randomly oriented crystals. This averages out the directionality in properties, so
the aggregate behaves as if it were isotropic. Sometimes, though, anisotropy is important.
Single crystals, drawn polymers and natural materials like wood are anisotropic; their prop-
erties depend on the direction in the material in which they are measured. Figure 4.8 has
separate property bubbles for woods in each of the two loading directions, parallel and
perpendicular to the grain. Fibre composites are yet more extreme: the modulus parallel to the
fibres can be larger by a factor of 20 than that perpendicular to them — we explore why in the
next section. Anisotropy must therefore be considered when wood and composite materials are
selected.



4.8 |nteratomic bonding and properties: the origin of elastic modulus

Recall from Section 4.6 the cohesive energy, H,, is the energy per mol required to separate the
atoms of a solid completely, giving neutral atoms at infinity (Figure 4.38). The greater the
cohesive energy, the stronger are the bonds between the atoms. Materials with strong bonds
have high melting points and high elastic moduli. Figure 4.39 shows the correlation between
absolute melting temperature, T, (here multiplied by the gas constant, R), and cohesive
energy, H.. The relationship is linear; the thermal energy RT,,, at the melting point is about 3%
of the cohesive energy.
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The resistance of an elastic solid to 3D expansion like that sketched in Figure 4.38 is
characterised by the bulk modulus K. Consider the work done if the volume occupied by one
atom, V,, is expanded by a volume AV — this is KAV /V, (per unit volume). Let the critical
expansion be A V*=V,/C*, at which point the bonds break, absorbing the cohesive energy, H,;
then if the molar volume is Vi,

*
AVE K _H or KV,, = C*H, (4.24)
v, OV,

Figure 4.40 is a plot of KV, against H, for the elements, showing that this approximate
linear relationship holds. The critical expansion constant C* = 3.5, implying that a volume
expansion of 1/3.5, or 30% (equivalent to a linear bond stretch of 10%), is enough to break
the bond completely.
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Figure 4.40 Bulk modulus and cohesive energy of the elements.

Bond stiffness and elastic moduli Think of atomic bonds as little springs linking the atom
centres. Figure 4.41 shows the springs and the way the energy stored in them changes as the
atoms are pulled apart or pushed together — it is an enlargement of the energy minimum in
Figure 4.38. When no force is applied, the atoms have equilibrium spacing a,; a force F pulls
them apart a little, to a, + 6. A spring that stretches by 6 under a force F has a stiffness, S, of:

S== (4.25)
0
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Figure 4.41 Bond stretching.

A force Fapplied to an atom of diameter a, corresponds to a stress o = F /a2 assuming each
atom occupies a cube of side a,. A stretch of § between two atoms separated by a distance a,,
corresponds to a strain ¢ = 6/d,. Substituting these into equation (4.25) gives

S
do

¢=FE¢

g =

from which

(4.26)

Table 4.1 lists the stiffness of the different bond types and corresponding ranges for Young’s
modulus, E. The covalent bond is particularly stiff; diamond has a very high modulus because
the carbon atom is small (giving a high bond density), and its atoms are linked by very stiff
springs (S = 200 N/m). For most engineering metals, the metallic bond is somewhat less stiff
(§ = 8—60 N/m). But mertals are close-packed, or nearly so, giving them high moduli — though
not as high as that of diamond. Alloys contain a mixture of metallic bonding, between similar
and dissimilar atoms, but these are of comparable stiffness. So when two elements are mixed,
the modulus generally lies between those of the pure metals. Tonic bonds, found in many
ceramics, have stiffnesses comparable with those of mertals, giving them high moduli too.



Table 4.1 Bond energies, stiffnesses and moduli

Cohesive energy  Bond stiffness  Young’s modulus

Bond type Example H. (kJ/mol) S (N/m) E (GPa)
Covalent Carbon—carbon bond 100—1200 20—-200 100—1000
Metallic Engineering metals 60—850 8—60 20-400
lonic Sodium chloride 600—1600 4—-100 30—400
Dipolar Polyethylene 7-50 0.5-5 0.5-5

As noted earlier, the stiffness of a single crystal metal or ceramic will vary with direction
relative to the atomic packing — they are anisotropic at the crystal scale. Most solids are
polycrystalline, containing very many grains stuck together, each with their own lattice
orientation (we return to this in Chapter 6). This averages out the directionality in the crystal
stiffness, giving isotropic elastic moduli.

Polymers contain both strong covalent bonds along the polymer chain and weak hydrogen
or van der Waals bonds (S = 0.5—5 N/m) between the chains; it is the weak bonds that stretch
when the polymer is deformed, giving them low moduli. The random molecular structure is
automatically isotropic. However, if the polymer is heavily drawn, the molecules align enough
for the covalent bonds to be stretched, giving a much higher modulus (see the right-hand end of
the polymer stress—strain curve of Figure 4.4). This is exploited in the production of polymer
fibres, giving properties that are anisotropic and far superior along the fibre compared to a
bulk polymer. This is discussed further in Chapter 19.

Table 4.1 allows an estimate to be made of the lower limit for Young’s modulus for a true
solid. The largest atoms (a, = 4 x 107" m) bonded with the weakest bonds (S = 0.5 N/m)
will have a modulus of roughly

0.5

Many polymers do have moduli of about this value. But as the E/p chart (Figure 4.8) shows,
materials exist that have moduli that are much lower than this limit. They are either foams or
elastomers. As we have seen, foams have low moduli because the cell walls bend easily when
the material is loaded (Section 4.4). The origin of the moduli of elastomers takes a little more
explaining.

The elastic moduli of elastomers An elastomer is a tangle of long-chain molecules with
occasional cross-links, as in Figure 4.42(a). The bonds between the molecules, apart from the
cross-links, are weak — so weak that, at room temperature, they have melted, meaning that
segments are free to slide over each other. Were it not for the cross-links, the material would
have no stiffness at all; it would be a viscous liquid.



(a) Undeformed (b) Stretched

Figure 4.42 Elastomer extension induces order, reducing entropy. Thermal energy tends to restore it.

The tangled structure of Figure 4.42(a) has high randomness, or as expressed in the language
of thermodynamics, its entropy is high. Stretching it, as in Figure 4.42(b), aligns the molecules:
some parts of it now begin to resemble the crystallites of Figure 4.37(b). Crystals are ordered;
their entropy is low. Thermal energy displaces atoms, tending to increase entropy again. So
here there is a resistance to stretching — a stiffness — that has nothing to do with bond
stretching but with thermal pushback to strain-induced molecular ordering. The cross-links
give the elastomer a ‘memory’ of the disordered shape it had to start with, allowing large
strains that are elastic and fully recoverable. A full theory is complicated — it involves the
statistical mechanics of long-chain tangles — so it is not easy to estimate the value of the
modulus. The main thing to know is that the modulus of an elastomer is low because it has this
strange thermodynamic origin, and (as a side effect) the modulus increases with temperature
(unlike that of all other solids) because it is thermal pushback that is providing the stiffness.

Temperature dependence of polymer moduli: the glass transition temperature Crystalline
solids have well-defined, sharp melting points. Amorphous polymers behave in a different
way — bonding is weaker and more diffuse, with the inter-chain bonding spread over a
spectrum of atomic spacing because of the tangled molecular structure. The amorphous re-
gions gradually change properties from solid to liquid over a range centred on the glass
transition temperature, Ty, as the weak inter-chain bonds progressively melt on heating. In
semi-crystalline thermoplastics, however, the crystallites have their own sharp melting tem-
perature, typically about 1.5 x Ty, due to the closer, regular packing of the chains. Elasto-
mers and thermosets have a glass transition but do not melt on heating — because of the
cross-linking, they degrade and burn instead.



How does the glass transition affect the Young’s modulus? The answer is dependent on the
type of polymer, since even if the weak bonding has gone, there can still be elastic behaviour
above Tg. Figure 4.43 shows schemarics of the variation of modulus with temperature. Below
Tg, polymers are referred to as glassy, with the modulus controlled by the hydrogen bonding.
Above Ty, amorphous thermoplastics (left-hand figure), show a tiny residual elasticity that
stems from entanglements in the molecular structure, blurring into viscous flow. Semi-
crystalline thermoplastics also show a drop in modulus across their glass transition, of the
order of 10 times if the crystallinity is high, to a broad plateau in modulus where the response
is referred to, somewhat misleadingly, as ‘rubbery’. The degree of crystallinity determines how
stiff the material remains above T, but eventually all thermoplastics melt and flow. Note the
position of room temperature (RT) relative to Ty — in amorphous thermoplastics, T, effec-
tively sets the upper limit of usefulness of the polymer; in semi-crystalline, it sets the lower limit
(due to their brittleness in the glassy state). Cross-linked behaviour is shown in Figure 4.43(b).
Elastomers display a dramatic drop in modulus through Ty, by a factor of order 1000; the very
low modulus of rubbers reflects the fact thatat room temperature the material is already above
T, The effect is well illustrated by immersing a rubber tube in liquid nitrogen, when it becomes
stiff and brittle! Thermosets have a much higher degree of cross-linking, retaining a higher
modulus as temperature falls, with heavily cross-linked thermosets barely showing a glass
transition effect at all.
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Figure 4.43 Schematic temperature dependence of Young's modulus for: (a) thermoplastics
(amorphous and semi-crystalline); (b) elastomers and thermosets. The glass transition temperature T is
where the weak inter-chain bonding is lost. RT indicates room temperature.



Polymer deformation shows other unusual characteristics. Since stretching the material is
accompanied by some sliding of the molecules past one another, the stiffness is particularly
sensitive to the rate of loading. Rapid loading does not give time for chain sliding; slow loading
enables it, giving a quite different response. The glass transition temperature is therefore
sensitive to the deformation rate. So at the same temperature, a polymer can switch from being
floppy and resistant to fracture, to being much stiffer and glass-like, by pulling on it rapidly.
Design to cope with the effect of temperature on polymers is discussed further in Chapter 13.

4.9 Summary and conclusions

When a solid is loaded, it initally deforms elastically. ‘Elastic’ means that when the load is
removed, the sohd springs back to 1ts original shape. The material property that measures
stiffness 1s the elastic modulus. We need three of them to deal with the different ways in which
solids can be loaded:

* Young’s modulus, E, measuring resistance to stretching and compressing;
 shear modulus, G, measuring resistance to twisting; and
o bulk modulus, K, measuring resistance to hydrostatic compression.

Many applications require stiffness at low weight, particularly ground, air and space ve-
hicles, and that means a high modulus E and a low density p. The E-p property chart helps
visualise this information and relate it to material classes.

The moduli have their origins in the stiffness of the bonds between atoms in a solid and in the
packing of the atoms and thus the number of bonds per unit area. The atomic packing does not
vary much from one solid to another, so the moduli mainly reflect the stiffness of the bonds.
Bonding can take several forms, depending on how the electrons of the atoms interact.
Metallic, covalent and ionic bonds are stiff; dipolar bonds are much less so, which is why steel
has high moduli and PE has low. Bonding can be understood in terms of the electronegativity
of atoms: their propensity to capture one or more electrons to become negative ions. A large
difference in electronegativity between two elements tavours ionic bonding; a small difference
or no difference at all favours covalent bonding.

The density of a material is the weight of its atoms divided by the volume they occupy.
Atoms do not differ much in size and packing, but they differ a great deal in weight. Thus the
density is principally set by the atomic weight; as a general trend, the further down the periodic
table we go, the greater the density.

There 1s very little that can be done to change the bond stiffness or atomic weight and
packing of a solid, so at first sight, we are stuck with the moduli and densities of the materials
we already have. But there are two ways to manipulate them: by mixing two materials to make
composites, or by mixing a material with space to make foams. Both are powerful ways of
creating ‘new’ materials that occupy regions of the E—p map that were previously empty.
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